

The Web Assembles
WebAssembly and the future of the web

WebAssembly is a new runtime for the web; a fast and efficient compilation
target for a wide range of languages that could have a far-reaching impact on
the web as we know it. This paper looks at the performance limits of JavaScript

and how WebAssembly was designed to tackle them. We then consider the
impact of WebAssembly on JavaScript and the wider web platform.

A white paper by Chris Price & Colin Eberhardt

2THE WEB ASSEMBLES

Why we need WebAssembly 3

The unbridgeable performance gap 4-5

Introducing WebAssembly 6-7

What is WebAssembly? 6

Where can I use WebAssembly? 6

How do I use WebAssembly? 7

What can WebAssembly do that JavaScript can’t? 7

The rise of WebAssembly and fall of JavaScript 8-9

Summary 10

White papers by Scott Logic 11

Contents

3THE WEB ASSEMBLES

 JavaScript was conceived almost a quarter of a century ago when the web was a very
different place. A scattered landscape of static documents and simple forms. The gleaming

Java applet skyscrapers only just visible on the horizon. Into this world, a modest scripting
language was born, with humble dreams of... form validation.

Jump forward 20 years, beyond the bruising browser wars, past the painful plugin wars and
hiding behind the hype of HTML5, the web is a very different place. JavaScript can no longer be

described as the light dusting of icing sugar on the cake. It’s more accurately described as the
cake. And the plate the cake is sat on. And the person who carried the plate out.

And the pastry chef who made the cake, the kitchen housing the chef, the building containing
the kitchen, the fabric of the building, the design of the building, the construction of the building,

the city in which the building was built, the city’s critical infrastructure… the list goes on*.

* Don’t believe us? Take a look in your node_modules folder...

Why we need WebAssembly
To understand the rationale behind WebAssembly, and why it works the

way it does, it helps to remember just how far JavaScript has come.

So where did all of this JavaScript come from?
And why did everyone suddenly decide to use it?

The short answer is that, in many cases, they didn’t.
For a long time developers adopted Flex (Flash),
or to a lesser extent Silverlight or Java (FX), in a
bid to paper over their perceived shortcomings
of the language, its runtime performance or the
functionality gaps in the browsers of the day.
However, over time, plugins encountered their own
issues - with headline-grabbing concerns about
their security and availability.

This was brought to a head when plugins started
suffering platform hostility, most notably on
iOS. This, coupled with ever-improving browser
performance, an ever-growing feature set and
significantly improved tooling, meant that for many
people JavaScript rapidly became “good enough”.

JavaScript is now the only language that can
honestly boast the “learn once, use anywhere”
mantra popularised in various forms by other
contenders in the past. Interestingly, whilst this is
true and despite it being an interpreted language,
it’s actually very rare to find developers directly
authoring their production code in it.

The rapid innovation in JavaScript has continued,
to the extent that most developers use build
toolchains ranging from simple stylistic checks,
polyfills and code minification (e.g. Webpack),
through transpilation of individual features from
future versions of JavaScript (e.g. Babel) or
JavaScript-like languages (e.g. TypeScript).

So, if JavaScript is itself now
a valid compiler target,
why do we need WebAssembly?

4THE WEB ASSEMBLES

In the very early days JavaScript execution was slow.
Browsers used simple interpreters to execute relatively
simple scripts. However, as the hype around HTML5
heated up, competition between browser vendors
resulted in considerable advances in JavaScript
performance. Most of this could be attributed to the
introduction of Just-In-Time (JIT) compilation and
increasingly sophisticated runtimes.

The diagram below gives an example of how
JavaScript is executed within a modern browser,
with arrows representing algorithms, and blocks
representing data structures.

JavaScript is delivered to the browser as text over
HTTP. This text is parsed into an Abstract Syntax
Tree (AST), which is used to generate bytecode that is
initially run by an interpreter.

The JIT profiles this running code and, based on
certain assumptions, compiles it into a more efficient
form. Through continuous profiling, the browser is
able to further optimise, and re-compile sections of
the code, resulting in yet-faster execution.

However, at any time, the assumptions that were
made can be violated, resulting in the optimised code
being rejected, and a less-optimal version being used
instead.

The unbridgeable
performance gap
While JavaScript is increasingly being used as a compilation target,
it is unfortunately not a very good one. To understand why, we need to consider
some of the technical aspects of how the browser’s runtime has evolved.

Characters Bytecode Baseline-
compiled code

Ion-
compiled codeAST MIR

PARSE GENERATE BASELINE -
COMPILE

ION -
BUILD

ION -
COMPILE

RUN RUNRUN & PROFILE BAIL

5THE WEB ASSEMBLES

This complex runtime, which consists of multiple
tiers of execution (Chrome’s V8 has two tiers, while
Safari’s Nitro has three), can achieve near-native
performance under optimal conditions, but this level
of performance isn’t immediately available. There is
an inherent start-up cost, as illustrated above.

“Time to Interactive” - the time it takes to load a web
page (or app), render the HTML, parse and execute
the JavaScript so that an end user can interact - has
become a very important metric, especially on mobile
devices. Further innovations in browser technology
such as code-caching and script streaming help
reduce this time, and there are wider initiatives, such
as the HTTP/2 standard, that optimise how resources
are downloaded by the browser.

Despite all these innovations, we
are fundamentally limited by the
inefficient way in which our code
is sent to the browser. Wouldn’t it
be better if our build tools could
deliver code as a pre-optimised
version in a compact form?

Parse Re-optimise Garbage collection

Compile & optimise Execute

6THE WEB ASSEMBLES

What is WebAssembly?

The official site has the following to say:

WebAssembly or wasm is a
new portable, size - and load-time
- efficient format suitable for
compilation to the web.

Paraphrasing, the standard aims to continue to offer
the same ubiquitous platform as JavaScript, as well
as offering the same security guarantees, allowing
the same code to run safely on a wide variety of
devices. Additionally, it aims to go beyond JavaScript
performance with a smaller binary format optimised
for parallel parsing.

On a technical level, WebAssembly co-exists with
JavaScript in a common runtime. They can share
memory and fully interoperate, with WebAssembly
calling JavaScript and vice versa. This means that, in
the long term, they will continue to evolve together,
and in the short term JavaScript features will be made
available to WebAssembly (e.g. garbage collection
or DOM access), so we’ll see WebAssembly features
being made available to JavaScript (e.g. 64-bit
integers or threads).

Where can I use WebAssembly?

All of the major JavaScript platform developers
(Apple, Microsoft, Google, Mozilla, Node.js) have
come together to form a W3C working group and
have shipped working MVP implementations of
WebAssembly in their respective platforms.This level
of engagement for a new format is unprecedented
across any previous attempts.

The key to this collective understanding of the
problem was asm.js: an attempt to attain the same
low-level performance requirements by utilising
only an optimisable subset of JavaScript. This had
the advantage of running in all existing JavaScript
environments but also opening the door to asm.js-
specific engine optimisations. It also introduced novel
ideas to solve the problems of portable code, such as
using the newly introduced ArrayBuffer for memory
access rather than buffer-overrun-prone pointers.

Whilst this demonstrated measurable performance
improvements, it also highlighted the fundamental
limits of the language.

With empirical performance evidence
available, and the lessons learned
in its implementation, the web
community were - for the first time
- able to forge a consensus on the
need for a new low-level language.

Introducing WebAssembly

7THE WEB ASSEMBLES

How do I use WebAssembly?

Unlike JavaScript, WebAssembly is intended to be
a compilation target rather than a programming
language. Its native format is currently a binary
encoding of its bytecode and related data structures.
Whilst there is a text format, it’s only really intended
for last-resort debugging. Instead, developers are
expected to use higher-level languages which can
compile down to WebAssembly.

The most popular languages at the moment are C++
and Rust. They are both a good fit due to the current
lack of garbage collection support, although this is
coming (see the next question). Interestingly, this is
one of the reasons that you can’t currently compile
JavaScript to WebAssembly.

What can WebAssembly do that
JavaScript can’t?

WebAssembly already allows for low-level performance
not possible with JavaScript, but there are even more
interesting features on the way:

 - Improved loading performance through the
use of streaming compilers and more efficient
binary encodings.

 - Improved performance of garbage collected
languages by allowing integration with the
engine’s garbage collection.

 - Improved performance when accessing
browser APIs (e.g. the DOM) by allowing those
APIs to be invoked directly rather than requiring
a JavaScript translation layer.

8THE WEB ASSEMBLES

The popularity of
JavaScript starts to fall
as it loses its monopoly

Short term
This year

Java, C#, Typescript
wasm used in lots of
creative experiments

WebAssembly performance
gains fail to materialise,
leading to disappointment
from some early-adopters

Another wave of mobile,
desktop and server-
side UI frameworks will
re-target the web: a
re-emergence of “write
once, run everywhere”

Host bindings (DOM
access) and threading
arriving in WebAssembly

Java and C#
wasm considered
production-ready

Garbage Collection support
arrives in WebAssembly

Rust, C and C++
wasm used in production for
performance critical, algorithmic
tasks, e.g. source-map support in
developer tooling

In the short term the impact of WebAssembly is likely to be small, with the immature
tooling and restrictive nature of the MVP limiting its use to a few specialised use
cases. However, as the WebAssembly runtime and tooling evolves, its impact could
be quite far-reaching.

The rise of WebAssembly
and fall of JavaScript

9THE WEB ASSEMBLES

Heavyweight productivity tools
all start moving to the web
(e.g. Photoshop, AutoCAD)

Medium term
2 - 3 years

Long term
5 years

Mac OS drops support for non-web
technology apps, resulting in a single
unified desktop runtime across
mainstream consumer desktops

Native Android apps
die-out in favour
of Progressive
Web Apps running
WebAssembly

As WebAssembly has
replaced JavaScript,
a replacement for the
DOM emerges

Microsoft introduce
Windows-Legacy
edition, the only way to
run legacy native apps

WebAssembly UI
frameworks emerge,
e.g. React for Rust

JavaScript compiles
to WebAssembly with
comparable runtime
performance

Windows store
drops support
for non-web
technology apps

We predict a slow start for WebAssembly but, as it
matures and gains traction, we believe it will become
a central part of the web platform. WebAssembly
doesn’t exist in isolation, and other web technologies
will continue to evolve alongside it. Most notably the
umbrella of technologies associated with Progressive
Web Apps (PWA) which, amongst other features,
allow web apps to be installed and used offline -
further blurring the line between web and native apps.

Ultimately, our more outrageous
predictions see WebAssembly
and PWAs pushing out native
apps from operating systems,
crowning the browser as the
modern operating system.

10THE WEB ASSEMBLES

Summary
JavaScript has enjoyed a twenty three year monopoly as the only

widely-supported language on the web. As of 2017, with the release of
WebAssembly, the tide has started to turn.

It’s going to take a while for the impact of this to be felt, but, when it does,
it will be far-reaching, further cementing the ubiquity of the web, and

extending its reach beyond the restrictions that JavaScript has imposed.

 The Web has become the most ubiquitous application platform
ever, and yet by historical accident the only natively supported

programming language for that platform is JavaScript.

Haas et al., PLDI 2017

1 1THE WEB ASSEMBLES

If you'd like a copy of these sent to your inbox,
please email colin@scottlogic.com

http://blog.scottlogic.com
http://blog.scottlogic.com/2014/05/19/html5-at-enterprise-scale.html
http://blog.scottlogic.com/2016/10/10/unstoppable-html5.html

Want to discuss the impact
of WebAssembly
on your organisation?

At Scott Logic, we design and build software that
transforms the performance of some of the world’s
biggest and most demanding organisations.
This means truly understanding current and
emerging technologies, and helping our clients
make the right choices.

If you’d like to discuss the impact of WebAssembly,
or any other technology challenges that face your
organisation right now, we’re always happy to chat.

To arrange a free consultation
contact Colin Eberhardt on:

+44 333 101 0020

colin@scottlogic.com

April 2018 © Scott Logic Limited. All rights reserved.

http://scottlogic.com
http://www.scottlogic.com

	Button 1:
	Button 4:
	Button 3:
	Button 2:

